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The use of Backlund transformations in obtaining 
N-soliton solutions in Wronskian form 
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Department of Applied Mathematics, University of Newcastle-upon-Tyne, NE1 7RU 

Received 25 August 1983, in final form 14 December 1983 

Abstract. The Wronskian formulation of the N-soliton solutions of various nonlinear 
evolution equations-modified Korteweg-de Vries (with both zero and non-zero 
asymptotic conditions), sine-Gordon, Kortewegde Vries, Kadomtsev-Petviashvili and 
Boussinesq equations-are obtained by inductive use of Backlund transformations in 
Hirota’s bilinear notation. 

1. Introduction 

For the nonlinear evolution equations which exhibit multisoliton solutions, two impor- 
tant techniques have been developed by which such solutions may be obtained. The 
inverse scattering transform (Ablowitz and Segur 1981) has been used to solve many 
nonlinear equations of physical significance, and using this method one obtains the 
N-soliton solution in the form of some function of an N X N  determinant. On the 
other hand, the direct method of Hirota (1980) has provided a remarkably simpler 
technique for obtaining the N-soliton solutions in the form of an Nth-order polynomial 
in N exponentials. 

However, both these formulations of the N-soliton solution have the disadvantage 
that writing the derivatives of the solutions in an easily handled way is not possible. 
As a result of this, verification of these solutions by direct substitution into the evolution 
equations has proved to be very difficult, if not impossible. An alternative formulation 
of the N-soliton solutions, in terms of some function of the Wronskian determinant 
of N functions, exists and because differentiation of such determinants is easy and its 
derivatives take such a compact form, this formulation does allow verification by direct 
substitution. This fact has been demonstrated-together with a derivation of the 
N-soliton solution in the Wronskian form using the Zakharov-Shabat method (Zak- 
harov and Shabat 1974)-for the Korteweg-de Vries ( K d v )  equation and its two- 
dimensional version the Kadomtsev-Petviashvili (KP) equation, by Freeman and 
Nimmo (1983a). 

Backlund transformations (BTS) (Miura 1976, Rogers and Shadwick 1982) have 
also provided a means of constructing N-soliton solutions, usually by means of the 
associated theorem of nonlinear superposition (Lamb 1974, Barnard 1973, Hirota and 
Satsuma 1978). Using the BT to obtain the N-soliton by iterative means-vacuum 
solution to one-soliton solution to two-soliton solution etc-is very difficult if the more 
usual form of the solution is used, but as was demonstrated for the cylindrical K d v  
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equation (Freeman et a1 1981) such a procedure is made much easier by the use of 
the Wronskian form. 

In this paper we shall use BTS of the form first introduced by Hirota (1974) to 
deduce, and then prove by inductive use of the BT, that the equations under consider- 
ation ( K d v ,  KP, modified K d v  (with both zero and non-zero asymptotic conditions), 
sine-Gordon and Boussinesq) have N-soliton solutions which have the Wronskian 
form. For all the above examples (with the possible exception of the modified K d v  
with non-zero asymptotic condition), the N-soliton solutions may also be verified by 
direct substitution. 

It may also be shown (Freeman 1983) that the N-soliton solutions of the nonlinear 
Schrodinger (NLS) equation (in both attractive and repulsive cases) and of the Davey- 
Stewartson equation-the generalisation to two dimensions of the repulsive NLS 
equation-have Wronskian formulation. In the repulsive case the N-soliton takes the 
form of N X N Wronskian determinants. On the other hand, in the attractive case, 
they are the determinants of 2 N  X 2 N  matrices whose four N X N submatrices each 
have determinants that are Wronskian: these determinants, although not themselves 
Wronskian, have properties with regard to differentiation which are very similar to 
those possessed by such determinants. 

2. Properties of Wronskians 

A Wronskian W is an N X N determinant of a matrix with columns S ' O ' ,  . . . , S(N-l), 
where Si"'= (S,(x, y, t ) ,  . . . , SN(x, y, t ) ) =  and S"'= d'S"'/ax', written 

w = IS'O', , . . , s"-" I 2  

or in a more compact notation, 

W = (N: 1). 

Here and below N :K will represent the N - K + 1 consecutive (ordered) columns 
S'O' ) . . .  , S"-K' and in this notation N - K  will indicate the single column SiN-K' .  
The most useful property of a Wronskian is the compactness with which its derivatives 
may be written, for we have 

N-l 

S(N-l)l - - c J s ( O ) ,  . . . , s(j-1) s ( I + ~ ) ,  s ( I + ~ ) ,  , . . , 
1-0 

- IsiO), . . . , s ( N - 2 )  s") 
- 7 1  

= ( N 2 2 ,  N) 

since in all other terms there are two equal columns. In a similar way higher-order 
x-derivatives of W may be computed to give sums of terms which depend only on the 
order of the derivative and not upon N. 

Further, if S ( O )  is such that 
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and 

then the y and t derivatives of W may also be computed in a compact form. For 
example, suppose 

then 
as‘J1/ay = a a2s(j)/ax2; 

, 9 , I1 - - , [ Is (O) ,  , . . , s(N-31 s”) S ( N - l ) l +  /s(OI, . . .  s ( N - 2 )  S(N+1)  

= a[-( N 3, N - 1, N )  + (N  _* 2, N + l)] 

where we reorder the columns in the first term and hence introduce a minus sign. The 
final property that we shall describe makes use of the determinantal identity 

N-1 

r = l  1=0 

( f tr)ls~O1,. . , , s(N-1’1 = C Is(O), . . . ,  S ‘ I - 1 )  ~ S ( I )  s ( I + ~ )  , . . . ,  S(N-1)  I, 

where (S‘” = (& a’Sl/axJ,. . . , & a’S,/ax’)’. Suppose S‘”’ is such that for all i = 
1 , .  . . , N there is a K (the same for all i )  such that 

aKsl /axK = &s,, 

@‘”= S ( J + K ) .  

or more concisely 

9 

then the above sum will reduce to the sum of only a few terms. For example, if K = 2 

(f 1 = 1  5, ) (NLl)=-(NL3,N- l ,N)+(N-^2 ,N+1) .  

We shall now give examples of how the above properties may be used to prove, by 
use of BTS, that the N-soliton solutions of various nonlinear evolution equations take 
the form of Wronskians. In each of the examples the solutions can also be verified by 
direct substitution into the evolution equations, as has been done elsewhere for some 
of the examples (Freeman and Nimmo 1983a, b, Nimmo and Freeman 1983). 

3. Examples 

We shall use the modified Kdv as a prototype example and then show how the technique 
developed for that equation may be used for the other equations mentioned in the 
introduction. 

3.1. Modified Kdv equation 

In all the examples we shall use the Hirota bilinear notation (Hirota 1980). The 
modified K d v  equation 

(1) U, + 6u2u,  + U,,, = 0 
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has bilinear form (Hirota and Satsuma 1978) 

(0, + D:)f * f*  =O, 

D',f* f*=0,  (2b) 
where U = i  (log f*/f),, f* being the complex conjugate of f. A BT between two 
solutions f '  and f of (2) is defined by the pair of relations (Hirota 1974) 

D,f' * f*=-ikf'*f, 

( 0, + 3 k D, + 0: ) f ' f = 0, 

where k is an arbitrary real constant. This pair of equations is, by definition, such 
that if we specify f as some solution of (2), integration of (3) will generate another 
solution f '  of (2). Thus if we take f = 1, corresponding to the vacuum solution w = 0, 
we obtain a pair of equations for f i ,  

f i x  =ik,fT, 

f i t  + 3k?flX +fix,, = 0. 

fi,, = k:fP 

Eliminating the complex conjugate from (4a) we obtain 

The general solution of (4) is 

f l  = (1 - i)al exp( klx + 4k:t) + ( 1  + i)pl exp( - k lx  + 4k:t), ( 5 )  

where a; and pi are arbitrary real constants. If we now use the solution f l  given by 
( 5 )  to generate another solution f2 and so on, we will generate a hierarchy of solutions 
fl to fN. We postulate that fN is given by 

fN=(N'1), (6) 

Si = (1 -i)ai exp( kjx- 4k;r) + (1 +i)pi  exp(-kjx+ 4k!r), 

using the notation already defined, where 

(7) 
for i = 1, .  . . , N, where ai, pi and k j  are arbitrary real constants. This form of the 
N-soliton solution has been obtained by independent means by Satsuma (1979). 

In fact what we postulate is that the N-soliton solution of (1) is given by 

fN = (N21) = . . . , S ( N - l )  I 9  

where S ( O )  is such that 
k2S'I) = S(f+2) and $ I )  = -4s(i+3) 

7 

using (4), and where 

k2S"' = (k: bSl/ax', . . . , kf,  a'S,/ax'). 

In order to verify this solution we shall show that the BT (3) transform between 

fN-]= (N-*2) and fN=(N-*l). 

Computing the various derivatives of fN-l and fN in accordance with the procedure 
described in 0 2, we have for fN 

fNx = "2, N ) ,  fNxx = ( N ' 3 , N - l , N ) + ( N ~ 2 , N + l ) ,  
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fN,,, = ( N  ' 4 ,  N - 2 ,  N - 1 ,  N )  +2(N ' 3 ,  N -  1 ,  N + 1 )  +(N'2, N + 2 ) ,  

fN, =-4[(N'4, N - 2 ,  N -  1 ,  N )  -(N'3,  N -  1 ,  N +  1 )  +(N'2, N + 2 ) ] ,  

and similar expressions for the derivatives of fN-l. As well as these derivatives we 
need to determine fg,  and this may be achieved by noting that the S, satisfy 

alS:laxl = ik, a1-'s,lax1-', 
and hence f$ = I IKl  (ikJ(-1,  N L 2 ) .  Substitution of these expressions into ( 3 a )  now 
yields 

N 
[ ( - 1 ,  N l 3 ,  N - 1 ) ( N 2 2 ) - ( - 1 ,  N-*2) (N23 ,  N - l ) ]  n ik, 

i = l  

N-1 
(N21)(-1,N'3)  n iki) 

i = l  

which is the expansion by N X N minors of the (2N - 1 )  X (2N - 1 )  determinant 
N rows I e . .  fi i k i l N L 3  

* -1 N - 2  N - 1  
i = l  N J 3  -1 N - 2  N - 1  N-lrows 

which can easily be shown to be equal to zero by means of elementary row and column 
operations. Note that in order for this determinant to vanish we must have, for 
i = 1 ,  . , . , N - 1 ,  the constants ai, pi and ki in fN equal to the corresponding constants 
in fN-1. 

In a very similar way equation (3b)  may be shown to give 

-6[(N -*4, N - 2 ,  N - 1 ,  N ) ( N  ' 2 )  + ( N  ' 4 ,  N - 2 ,  N ) ( N 2 1 )  

- ( N  '4, N - 2, N - 1) (N  -*2, N )  - ( N  '3, N - 1 ,  N + 1) (N  ' 2 )  

- ( N  ' 3 ,  N +  1 ) ( N  ' 1 )  + ( N  ' 2 ,  N + 1)(N'3, N -  l ) ]  

having made use of the two identities 

( 2  i = l  k ' ) ( N 2 1 ) = - ( N L 3 , N - 1 , N ) + ( N - * 2 , N + l ) ,  

(f i = l  k ? ) ( N - * 2 ) = - ( N L 4 , N - 2 , N - 1 ) + ( N ' 3 , N ) ,  

of the kind mentioned in 0 2, and this may be written as 

N - 3  N - 1  N 
N L 4 , N - 2  N - 3  N - 1  N 

+ 6 1 N ! 3  N-*3 

which are zero as for (3a) .  So, by induction, we have proved that the Nth integral of 

This solution is real for all real ai, pi and ki and is thus the N-soliton solution of 
the modified K d v  equation. In other examples, some of which we shall consider here, 
the soliton solutions will form only a (real) subset of the (complex) solutions obtained 
from the BT. 

the BT ( 3 )  i S f N = ( N ' l ) .  
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3.2. Modified Kdv with non-zero asymptotic condition 

This equation 

U, + 6u2u, + U,,, = 0, 

is equivalent to the mixed K d v  (MKdv)  equation 

U + uo as 1x1 + 00, 

U, + 6u2u, + 6uu, + U,,, = 0, U + O  as lx1+0, 

and has been considered by Ono (1976) and in the second form by Wadati (1975). 
Equation (8) has bilinear form (Ablowitz and Satsuma 1978) 

(D,+6u:Dx+D;)f* * f = O ,  

(D:  - 2 i u , ~ , ) f *  - f = 0 ,  

where U = uo+i[log(f*/f)], and has BT 

Guided by the above example we put f = 1 corresponding to the vacuum solution 
U = uo and hence obtain from (10) 

so that we can take as the Nth solution 

f = ( N L l ) ,  

where 

SI = a, exp[ l ,x - (6ui  + 41:) 1,t] + P I  exp[- l ,x + (6ui  + 41:) l,t] 

and where 1, = + ( k f - ~ g ) ~ ’ ~ ,  and from ( l l a )  we have 

a?/., = ( -uo+ i l l ) / k l  and P ? / P I  = ( - u - i t ) / k , .  

As a result of these latter conditions we see that 

and consequently, 

where (fi), is the determinant of the matrix with columns S‘”) ,  . . . , S ( ’ - ’ ) ,  
S(’+l), . . . , S”’. The fact that f X  is a sum rather than just a single term makes the 
proof that the BT transform between f w P l  and fN by direct substitution a little more 
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difficult; however, it is still possible. We compute fgX and regroup terms to give 

N-1 
fgx = IIN C [(-uo)l+liN-~-l(fi), + (-uo)jiN-l(NL I ,  N +  I)]], 

,=O 

where nN=nz’=, (l /k,) .  
Equation ( loa)  now gives the terms 

N 

+ (N-*2)  j = O  C (-uo)jiN-j-l(fi)j]IIN-l. 
The terms in the summation with j > N - 2 vanish identically and we are left with 

which is the Laplace expansion (by N X N minors) of the ( 2 N -  1) X ( 2 N -  1) deter- 
minant 

which is equal to zero in the usual way. Verification that ( l o b )  is satisfied is much 
easier since it does not involve complex conjugates and hence does not contain 
summations, and thus the BT is proved. 

3.3. Sine-Gordon equation 

The details for this equation are very similar to those for the M K d v  equation of 0 3.1. 
The sine-Gordon equation 

U,, = sin U (12) 

has bilinear form 

D,D,f* f =+(f’-f*’) (13) 

together with its complex conjugate, where U = i(1og f*/f)  (Hirota and Satsuma 1978), 
which has the BT 

D,f’ * f * =  kf’*f, 

o f f ’  * f =(1/4k)f’*f*, 

which is slightly different from the BT obtained by Hirota (1974) and is obtained by 
considering f ’  satisfying (13) and f satisfying the complex conjugate. By taking f = 1 
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we get 

f l ,  = klfT, 

f l ,  = (4k,)-’fT3 

f l x x  = k:fh 

fl,, = ( 1 6 k Y f I ?  

so that we may deduce that 

f ~ = ( N - * l ) ,  

where 

Si = ai exp kix + - t + ipi  exp - kix- t ( :ki ) ( 41ki ) 
with a,, pi and k, all real. 

Also it is easy to  show that (cf 9 3.1) 

N N 1  
f $ =  n k,(-1, N-*2)= n -(R) 

I =  1 , = I  k, 

where ( & ) = ( S ( ’ ) ,  . . . , S(N)I .  Verifying that (14) transforms between fN-l  =(N-*2) 
and fN is now straightforward. 

3.4. K P ,  K d v  and  Boussinesq equations 

Finally, we shall consider some examples that we have considered from a different 
viewpoint elsewhere (Freeman and Nimmo 1983a, b, Nimmo and Freeman 1983). 

The K P  equation 

(U, + ~ u u ,  + U,,,), + 3uYy = 0 

has bilinear form 

(D,D, + 0: + 3 D 3 f  * f = 0 ,  

(0: - D,)f’ * f = 0 ,  

( D ,  - 3D,D, + Df)f’ a f = 0. 

where U = 2(logf),,, and BT (Hirota 1980) 

Again, if we take f = 1 corresponding to  the vacuum solution we obtain from (17) a 
solution f’ corresponding to  the two-soliton solution from which we deduce the form 
of the N-soliton solution as 

fN = ( N - * l ) ,  

where 

S, = a, exp(1,x + ~ f y  - 4 1 3  +@, exp(-n,x + n f y  +4nqt). 

This solution may then be verified using (17) in the usual way (see Freeman and 
Nimmo 1983a, b). To obtain the N-soliton solution of the K d v  equation we take 
n, = I ,  = k,, in which case a factor of exp( k f y )  may be taken out of each row of the 
Wronskian and upon taking U = 2(log f)*, these factors make no  contribution to  U. In 
order t o  get the (regular) soliton solutions we take the k,’s t o  be real and @,/a ,  = (-l)’+’ 
for i = 1, . . . , N where the k,’s are ordered so that k, < k2 < . . . < kN. 
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Similarly for the Boussinesq equation 

urt - uxx  - 6( u*)x.x - U,,,, = 0, 

in bilinear form, 

(D:-D’,-D:)f* f =o ,  (18) 

where U = (logf),, (Hirota 1973) and BT (Hirota and Satsuma 1977, Nimmo and 
Freeman 1983) 

( D ,  + i J 3  @)f’ . f = 0, 

(iJ3 D,D, + D, + ol)f’ . f = k f ’ i  

From this we obtain 

f = ( N 2 1 ) ,  

where 

S,  = a, exp(/,x-iJ3 Ift)+P, exp(m1x-iJ3 mft)+-y, exp(T1x-iJ3 n f t )  

and I , ,  m, and n, are the three roots of 4p:+p, = k,. 

- 

4. Conclusions 

A method of using BTS to obtain N-soliton solutions has been described. This method 
allows one to verify solutions directly and to prove by induction that the Nth  solution 
of the hierarchy of integrals of the BT is a Wronskian of N functions which differ from 
one another only parametrically. The Wronskian formulation has also been extended 
recently to the soliton solutions of other equations-nonlinear Schrodinger equations 
(Freeman 1983) and partial differential-difference equations (Nimmo 1983)- 
however, the scope of this approach is still not yet fully understood. 
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